Рентген изобрел Вильгельм Конрад Рёнтген

Применение изобретения в наше время

Сейчас мы чаще пишем фамилию ученого-физика с маленькой буквы, ведь давно уже это слово стало нарицательным для обозначения аппарата, лучей и самого метода диагностики, широко применяемого в медицине. От его фамилии образовались такие слова, как рентгеноскопия, рентгенограмма, рентгенология, рентгеновский и многие другие.

И спектр применения открытых в конце двадцатого века удивительных лучей теперь не исчерпывается только медициной. Их используют и в создании сверхточных микроскопов и телескопов, позволяющих как разглядеть атомы, так и исследовать неведомые пространства космоса. Рентгеноструктурный и рентгеноспектральный анализ дает возможность изучать строение кристаллов и структуру вещества. Дефектоскопия, выявляющая скрытые пустоты в огромных по объему отлитых деталях, также использует технологии рентген-излучения.

Так открытие, сделанное более 120 лет назад, продолжает активно использоваться в науке и технике, приносить пользу людям.

Таинственное свечение

Поздним вечером 8 ноября 1895 года немецкий исследователь Вильгельм Рентген неожиданно для себя самого совершил открытие, которому мог бы позавидовать любой ­ученый.

Рентген изучал электрические разряды в стеклянных вакуумных трубках. В тот день он, как обычно, задержался в лаборатории допоздна — время шло к полуночи. Наконец, ученый погасил свет и собирался уже отправиться домой, как вдруг заметил странное свечение на рабочем ­столе.

Оказалось, что светился экран, покрытый платиносинеродистым барием (BaPt (CN)4 • 4Н20).Слабое бледно-зеленое свечение экрана появлялось только тогда, когда катодная трубка работала. Ее выключение приводило к исчезновению таинственного света. Перемещая экран по лаборатории, физик понял, что удивительные лучи распространяются на несколько метров, легко преодолевая преграды из непрозрачных материалов — алюминиевые листы, толстые книги, колоду игральных карт, деревянный ящик лабораторного стола… А случайно подставив под чудо-излучение руку, ученый узрел на экране жутковатую картину — скелет собственной ­кисти!

Тут Рентген вспомнил, как пару дней назад он обнаружил, что лежащая на его рабочем столе фотопластина оказалась таинственным образом засвечена, хотя и была завернута в светонепроницаемую упаковку. Теперь он догадался, что причиной этого явления стали только что обнаруженные загадочные ­лучи.

Палеобиологи с помощью рентгена смогли обнаружить остатки пигмента в окаменевших останках, что позволило выяснить, как были окрашены динозавры. Оказалось, что окраска этих гигантов была довольно невзрачной — в основном преобладали черный и коричневый ­цвета.

Семья

Здесь же, в Цюрихе, он знакомится со своей будущей женой Анной Бертой Людвиг. Дочь хозяина пансиона, в котором жил тогда еще небогатый, никому не известный студент Вильгельм Рентген привлекает его образованностью, умением поддерживать разговор, понимать речи будущего физика, насыщенные научными терминами.

Анна ответила взаимностью на чувство молодого человека, но родители были категорически против их союза. Суконщик и купец, отец Вильгельма мечтал, чтобы сын нашел себе более состоятельную невесту, а отец Анны не желал отдавать дочь за бедного студента и требовал, чтобы Рентген сначала получил степень доктора наук. Влюбленным запретили встречаться, и всё, что им оставалось, – писать друг другу письма и ждать окончания учёбы.

Анна так влюблена, что за эти несколько лет ожидания отказала еще нескольким претендентам на ее руку. И вот, получив степень доктора наук, Вильгельм Рентген спешит к любимой с огромным букетом алых роз. Теперь для свадьбы нет никаких преград!

К сожалению, у Вильгельма и Анны не было своих детей. Они удочерили маленькую племянницу Анны Жозефину и воспитывали в любви и ласке.

Вильгельм Рентген переживет свою любимую супругу, до последних дней будет ухаживать за ней, окружая ее заботой и вниманием.

От катодных трубок к томографам

Рентген-диагностика развивалась стремительно. Уже в 1919 году аргентинский врач Карлос Хьюсер впервые провел рентгенологическое исследование кровеносных сосудов. Для того чтобы увидеть сосуды, Хьюсер внутривенно ввел контрастное вещество — йодид ­калия.

В 1927 году португальский специалист Эгаз Мониз предложил методику исследования сосудов головного мозга с помощью рентгена. Исследования Мониза и Хьюсера положили начало рентгеновской ангиографии, которая широко используется и в настоящее ­время.

Одновременно с распространением диагностики развивалась и рентгенотерапия. В 50‑х годах XX века хирурги предложили проводить операции с использованием рентгеновского ­излучения.

Активно исследовались и методы защиты. Были определены допустимые дозы излучения и разработаны правила работы. Врачей и лаборантов, занимавшихся рентгенодиагностикой, обязали носить защитные свинцовые ­фартуки.

Новый этап в использовании излучения для диагностики наступил в 1972 году, когда американский физик Аллан Кормак и британский инженер Годфри Хаунсфилд предложили метод компьютерной томографии. Они смогли измерить степень ослабления рентгеновского излучения различными по плотности органами и тканями ­организма.

Томография стала возможной благодаря компьютерным технологиям, которые позволили анализировать большие объемы данных. Первые томографы использовались только для исследования головного мозга, но вскоре появились аппараты, «сканировавшие» весь организм. За открытие Хаунсфилд и Кормак получили в 1979 году Нобелевскую премию по физиологии и ­медицине.

Использование рентгеновских лучей на заре XX века

В начале XX века еще не было известно о последствиях бесконтрольного применения Х-лучей. Вдохновившись идеями Рентгена, другой известный физик Томас Эдисон пытается сконструировать флюороскоп – аппарат для рентгенографии внутренних органов человека. Однако эксперименты приводят к гибели ассистента физика: за четыре года он получает слишком большую дозу облучения, испытывая на себе действие рентгеновских трубок. У человека развилась злокачественная опухоль, и спасти его не удалось.

Происходят и курьезные случаи. Однажды Рентген получает письмо от матроса с просьбой прислать ему в конверте немного чудодейственных лучей. Участвуя в сражениях, он получил пулевое ранение в грудь, но врачи не могут извлечь пулю, не зная точное ее местонахождение.

А владельцы одного из магазинов модной обуви закупили флюороскоп, чтобы по рентгеновским снимкам ног клиенток было удобнее подбирать туфли. Использование лучей непрофессионалами приводит к тому, что покупатели получают огромную дозу облучения, поражения кожи.

В Англии выходит реклама одежды, якобы предохраняющего от рентгеновского облучения, а в США даже издают закон, воспрещающий использовать рентгеновские лучи в театральных биноклях.

История с изюминкой

Шел 1886 год. Граф Михаил Воронцов из ревности выстрелил в свою жену из дробовика. В тяжелом состоянии с гнойным воспалением женщина была доставлена в больницу Кронштадта. Несмотря на то что ее лечением занимались ведущие врачи, состояние больной только ухудшалось. Обнаружить все инородные тела, вызывавшие воспаление, специалистам не ­удавалось.Раскаявшийся граф вспомнил, как в одном из периодических изданий он прочел статью об открытии немецкого ученого Рентгена.

Там же было описание прибора для рентгенодиагностики. Сконструировать прибор предложили профессору Александру Попову (тому самому изобретателю радио). Аппарат был создан в кратчайшие сроки. С его помощью Попов получил снимок локализации дроби в теле пациентки. В отличие от современных приборов, позволяющих получать снимки за считанные минуты, экспозиция заняла не менее часа. Тем не менее инородные тела были благополучно извлечены, и графиня пошла на ­поправку.

Рентгеновские лучи быстро нашли широкое применение в самых разных областях. В одном из своих сообщений сам Рентген представил фотографию заряженного ружья. На снимке четко видны дефекты на внутренней поверхности двустволки. Лучи стали использовать в криминалистике, медицине и даже в ­искусствоведении.

Вскоре рентген-кабинеты появились и в других городах России. Их стали организовывать и на военных судах — диагностика позволяла быстро находить осколки в теле раненых моряков. Один из аппаратов был установлен на крейсере ­«Аврора».Уже в 1918 году в России появилась рентгенологическая клиника, а в 1921 году в Петербурге — первый стоматологический кабинет, в котором использовалась ­рентгенодиагностика.

Основные свойства рентгеновских лучей

  1. Проникающая способность. Все тела для рентгеновского луча прозрачны, и степень прозрачности зависит от толщины тела. Именно благодаря этому свойству луч стал применяться в медицине для выявления работы органов, наличия переломов и инородных тел в организме.
  2. Они способны вызывать свечение некоторых предметов. Например, если на картон нанести барий и платину, то, пройдя через сканирование лучами, он будет светиться зеленовато-желтым. Если поместить руку между трубкой рентгена и экраном, то свет проникнет больше в кость, чем в ткани, поэтому на экране высветится ярче всего костная ткань, а мышечная менее ярко.
  3. Действие на фотопленку. Х-лучи могут подобно свету делать пленку темной, это позволяет фотографировать ту теневую сторону, которая получается при исследовании рентгеновскими лучами тел.
  4. Рентгеновские лучи могут ионизировать газы. Это позволяет не только находить лучи, но и выявлять их интенсивность, измеряя ток ионизации в газе.
  5. Оказывают биохимическое воздействие на организм живых существ. Благодаря этому свойству рентгеновские лучи нашли свое широкое применение в медицине: они могут лечить как кожные заболевания, так и болезни внутренних органов. В этом случае выбирается нужная дозировка излучения и срок действия лучей. Длительное и чрезмерное применение такого лечения весьма вредно и губительно для организма.
Галилео. История изобретений. РентгенГалилео. История изобретений. Рентген

Следствием использования рентгеновских лучей стало спасение множества человеческих жизней. Рентген помогает не только своевременно диагностировать заболевание, методики лечения с применением лучевой терапии избавляют больных от различных патологий, начиная с гиперфункции щитовидной железы и заканчивая злокачественными опухолями костных тканей.

Принципы получения изображения

Особенности этого излучения определены самой природой их появления. Излучение происходит за счет электромагнитной волны. К основным ее свойствам относятся:

  1. Отражение. Если волна попадет на поверхность перпендикулярно, то она не отразится. В некоторых ситуациях свойством отражения обладает алмаз.
  2. Способность проникать в ткани. Помимо этого, лучи могут проходить сквозь непрозрачные поверхности таких материалов, как дерево, бумага и т.п.
  3. Поглощаемость. Поглощаемость зависит от плотности материала: чем он плотнее, тем икс-лучи больше его поглощают.
  4. У некоторых веществ происходит флуоресценция, то есть свечение. Как только излучение прекращается, свечение тоже проходит. Если оно продолжается и после прекращения действия лучей, то этот эффект имеет название фосфоресценция.
  5. Рентгеновские лучи могут засветить фотопленку, так же как и видимый свет.
  6. Если луч прошел сквозь воздух, то происходит ионизация в атмосфере. Такое состояние называют электропроводным, и определяется оно с помощью дозиметра, которым устанавливается норма дозировки облучения.

Излучение — вред и польза

Когда было сделано открытие, ученый-физик Рентген не мог и представить, насколько опасно его изобретение. В былые времена все устройства, которые продуцировали излучение, были далеки от совершенства и в итоге получались большие дозы выпущенных лучей. Люди не понимали опасности такого излучения. Хотя некоторые ученые уже тогда выдвигали версии о вреде рентгеновских лучей.

Х-лучи, проникая в ткани, оказывают на них действие биологического характера. Единица измерения дозы радиации — рентген в час. Основное влияние оказывается на ионизирующие атомы, которые находятся внутри тканей. Действуют эти лучи непосредственно на структуру ДНК живой клетки. К последствиям неконтролируемого излучения можно отнести:

  • мутация клеток;
  • появление опухолей;
  • лучевые ожоги;
  • лучевая болезнь.

Противопоказания к проведению рентгенологических исследований:

  1. Больные в тяжелом состоянии.
  2. Период беременности из-за негативного влияния на плод.
  3. Больные с кровотечением или открытым пневмотораксом.

Рентгенография в медицине

Для применения открытого рентгеновского излучения была изобретена специальная аппаратура, самые различные модификации которой нашли применение практически во всех областях современной медицины. Следует отметить, что если мягкие ткани человеческого тела пропускают лучи, то кости и твердые материалы, по каким-либо причинам находящиеся в организме, их задерживают. И для определения состояния скелета и наличия в организме чужеродных тел было разработано отдельное направление – рентгеноскопия.

Открытие Вильгельма Рентгена получило достаточно широкое распространение уже к 1919 году. Благодаря его исследованиям стали появляться новые медицинские отрасли – рентгенология, рентгенодиагностика, рентгеноструктурный анализ и др. С помощью данных методик удалось спасти здоровье и жизнь сотен тысяч людей во всем мире. Поэтому, вне всякого сомнения, результаты работы Рентгена являются одним из самых великих достижений в истории человечества.

Как работает рентген и где применяется

  1. В медицине. Рентгенодиагностика применяется для просвечивания живых тканей с целью выявления некоторых нарушений внутри организма. Рентгенотерапия проводится для устранения опухолевых образований.
  2. В науке. Выявляется строение веществ и природа рентгеновских лучей. Этими вопросами занимаются такие науки, как химия, биохимия, кристаллография.
  3. В промышленности. Для выявления нарушений в металлических изделиях.
  4. Для безопасности населения. Рентгенологические лучи установлены в аэропортах и других общественных местах с целью просвечивания багажа.

Медицинское использование рентгенологического излучения. В медицине и стоматологии широко применяются рентгеновские лучи в следующих целях:

  1. Для диагностирования болезней.
  2. Для мониторинга метаболических процессов.
  3. Для лечения многих заболеваний.

Человек удивительной скромности

После своего открытия сам ученый остается очень скромным человеком, отнюдь не купающимся в лучах всеобщей славы. Он занимается иными научными вопросами и до глубокой старости работает в Вюрцебском университете. Живет с семьей уединенно и скромно.

Он даже отказывается от дворянского титула, который был пожалован ему принцем Баварии за научные достижения. Также Рентген категорически отказывается патентовать своё изобретение, считая, что оно должно принадлежать и приносить пользу всему человечеству. По этой же причине он отказывается продать право на использование х-лучей Берлинскому электрическому обществу.

В 1901 году ученый становится лауреатом Нобелевской премии, но не приезжает в Стокгольм на вручение заслуженной награды, объясняя это загруженностью работой. А в годы первой мировой войны, когда страна остро нуждается в деньгах на вооружение и армию, он отдает свою премию на нужды фронта.

После смерти жены он чувствует себя одиноким и беспомощным, голодает, худеет. За ним ухаживает один из его учеников. В 1923 году Рентген страдает от серьезного заболевания и ему самому приходится воспользоваться преимуществами собственного изобретения для быстрой диагностики заболевания кишечника. Парадоксально, но в очереди на рентгеноскопию изобретателю х-лучей пришлось провести более десяти дней. Вильгельм Рентген умер в 1923 году от онкологического заболевания.

Первый памятный знак в честь ученого появился еще при его жизни в Петрограде, в 1920 году. А в 1928 году перед ЦНИИ рентгено-радиологического института установлен бронзовый памятник изобретателю х-лучей.

Открытие Х-лучей

Вильгельм Рентген со своим учителем и наставником Августом Кундтом продолжили сотрудничество в Вюрцбургском университете. Вильгельм Рентген довольно быстро добивается успеха в научной деятельности, он становится профессором математики, работает в крупнейших научных центрах Страсбурга и Гиссена.

В 1888 году он возвращается в Вюрцбургский университет, чтобы возглавить кафедру физики, а вскоре становится и его ректором. Однако по-прежнему главный интерес его деятельности заключен в научных изысканиях, а не административной работе. Он занимается изучением электрического тока в газах низкого давления и в вакууме.

В ноябре 1895 году, уже собираясь покинуть лабораторию поздним вечером, он заметил свет, исходящий в темном помещении от кристаллов платиноцианистого бария. Под странным свечением Вильгельм Рентген впервые увидел тени от костей кисти руки на белом экране. Заинтересовавшись этим фактом, Вильгельм Рентген провел ряд исследований, результатом которых стало открытие новых для науки лучей. Он установил, что для них в разной степени проницаемы почти все вещества, за исключением свинца.

Экран позднее заменили светочувствительной пленкой, и таким образом появилась возможность узнать о внутреннем строении человека, не выполняя хирургическую операцию. Еще около трех месяцев Рентген изучал свойства новых лучей, проводил опыты и эксперименты. Затем ученый опубликовал статью с результатами своего открытия и проведенных экспериментов, где в качестве иллюстрации выступал снимок руки жены Вильгельма Рентгена с отчетливо видными костями кисти. Биографы ученого утверждают, что, увидев первую в истории рентгенограмму собственной кисти, Анна была испугана и воскликнула, что она наблюдала свою смерть.

История рентгена в России

В России изготовление первого рентгеновского аппарата принадлежит Александру Степановичу Попову, который в 1896 году изобрел устройство для нужд Кронштадтского госпиталя. Это поистине оказалось чудом, потому что, как правило, от открытия и до момента внедрения проходят десятилетия. Однако в данном случае судьбе было угодно пойти по другому сценарию. Ученые наших дней исследовали снимки, которые выпустил первый рентгеновский аппарат. Они поразились их высокому качеству и четкости увиденного, что говорит о высоком уровне изобретения Попова.

Вильгельм Рентген, фамилией которого наименован аппарат, при опыте с лучом использовал фотопластину, что позволило ему выяснить, что луч проходит через ткани и оставляет на фотопластине черты скелета. Исследования ученым проводились на руке. Это произошло в 1895 году, а через год в России уже сделали первый снимок на изобретенном аппарате. В дальнейшем развитие рентгенографии в России и мире пошло в быстром темпе.

Для нашей страны с ее бесплатным медицинским обеспечением это изобретение стало настоящей находкой. Советские поликлиники были полностью оснащены рентгенографическими аппаратами, при необходимости их вывозили на дом для проведения исследований.

В 1918 году в России открылась первая рентгенологическая клиника. Необходимо отметить, что советское правительство не жалело финансовых вложений для развития рентгенографии и выпуска рентгеновских аппаратов. Очень скоро удивительный луч стали применять при диагностике заболеваний органов дыхания, в стоматологии. Для мировой хирургии рентгеновский луч стал настоящей находкой, так как с его помощью врач смог увидеть кости, минуя ткани и мышцы. Раньше такое было невозможно проделать с живым человеком.

Интересно, что сам Рентген не считал свое открытие великим и при жизни так и не запатентовал его, хотя многие промышленники обращались к нему с таким предложением.

Применение рентген-лучей в лечебных целях

Помимо выявления переломов костей, рентгеновские лучи широко применяются и в лечебных целях. Специализированное применение х-лучей заключается в достижении следующих целей:

  1. Для уничтожения раковых клеток.
  2. Для уменьшения размера опухоли.
  3. Для снижения болевых ощущений.

Например, радиоактивный йод, применяемый при эндокринологических заболеваниях, активно используется при раке щитовидной железы, тем самым помогая многим людям избавиться от этой страшной болезни. В настоящее время для диагностики сложных заболеваний рентгеновские лучи подключаются к компьютерам, в итоге появляются новейшие методы исследования, такие как компьютерная томография и компьютерная осевая томография.

Такое сканирование предоставляет врачам цветные снимки, на которых можно увидеть внутренние органы человека. Для выявления работы внутренних органов достаточно небольшой дозы излучения. Также широкое применение рентгеновские лучи нашли и в физиопроцедурах.

Ссылка на основную публикацию
Похожие публикации