История открытия рентгеновских лучей

Изобрел данные лучи 1895 году немецкий ученый Рентген: во время работы с катодолучевой трубкой он обнаружил эффект флуоресценции платино-цианистого бария. Тогда и произошло описание таких лучей и их удивительной способности проникать сквозь ткани организма. Лучи стали называться икс-лучами (х-лучи). Позже в России их стали именовать рентгеновскими.

Лучи способны проникать сквозь мягкие ткани, но задерживаются, длина их определяется препятствием твердой поверхности. Мягкие ткани в человеческом организме — это кожа, а твердые — это кости. В 1901 году ученому присудили Нобелевскую премию.

Однако еще до открытия Вильгельма Конрада Рентгена подобной темой были заинтересованы и другие ученые. В 1853 году французский физик Антуан-Филибер Масон изучал высоковольтный разряд между электродами в стеклянной трубке. Содержащийся в ней газ при низком давлении начал выпускать красноватое свечение. Откачивание лишнего газа из трубки привело к распаду свечения на сложную последовательность отдельных светящихся слоев, оттенок которых зависел от количества газа.

В 1878 году Уильям Крукс (английский физик) высказал предположение о том, что флуоресценция возникает вследствие ударения лучей о стеклянную поверхность трубки. Но все эти исследования не были нигде опубликованы, поэтому Рентген не догадывался о подобных открытиях. После опубликования своих открытий в 1895 году в научном журнале, где ученый писал о том, что все тела прозрачны для этих лучей, хотя и в весьма различной степени, подобными экспериментами заинтересовались и другие ученые. Они подтвердили изобретение Рентгена, и в дальнейшем начались разработки и усовершенствование икс-лучей.

Сам Вильгельм Рентген опубликовал еще две научные работы по теме икс-лучей в 1896 и 1897 годах, после чего занялся другой деятельностью. Таким образом, изобрели рентгеновское излучение несколько ученых, но именно Рентген опубликовал научные труды по этому поводу.

Излучение — вред и польза

Когда было сделано открытие, ученый-физик Рентген не мог и представить, насколько опасно его изобретение. В былые времена все устройства, которые продуцировали излучение, были далеки от совершенства и в итоге получались большие дозы выпущенных лучей. Люди не понимали опасности такого излучения. Хотя некоторые ученые уже тогда выдвигали версии о вреде рентгеновских лучей.

Х-лучи, проникая в ткани, оказывают на них действие биологического характера. Единица измерения дозы радиации — рентген в час. Основное влияние оказывается на ионизирующие атомы, которые находятся внутри тканей. Действуют эти лучи непосредственно на структуру ДНК живой клетки. К последствиям неконтролируемого излучения можно отнести:

  • мутация клеток;
  • появление опухолей;
  • лучевые ожоги;
  • лучевая болезнь.

Противопоказания к проведению рентгенологических исследований:

  1. Больные в тяжелом состоянии.
  2. Период беременности из-за негативного влияния на плод.
  3. Больные с кровотечением или открытым пневмотораксом.

Скромный гений

Рентген не был сторонником популяризации своего открытия, тем не менее известие об обнаружении лучей очень скоро просочилось в прессу. Журналисты многих изданий опубликовали сообщение о «сенсационном открытии», сопровождая статьи фотографиями Рентгена. Особый акцент журналисты делали на том, что рентгеновские лучи открывают новые возможности в ­фотографии.

Не обошлось и без курьезов. Одна фирма организовала выпуск специального белья, которое, как гласила реклама, было способно защитить от Х-лучей, а другая объявила о появлении кошельков с тем же ­свойством.

Рентгену начали поступать предложения о покупке прав на использование Х-лучей, однако исследователь отказался патентовать результаты экспериментов. Именно это позволило множеству ученых во всем мире продолжать изучение свойств рентгеновских лучей и поиск их практического ­применения.

Х-лучам Вильгельм Рентген посвятил чуть более года работы. Полученные результаты он опубликовал в трех статьях. Более десяти лет физики не могли дополнить результаты Рентгена какой‑либо новой ­информацией.

Сам же автор довольно быстро потерял интерес к Х-лучам, а шумиху вокруг открытия считал необоснованной. В архивных записях сохранилось письмо Рентгена своему помощнику, в котором он жалуется, что ажиотаж, поднятый учеными и журналистами, лишь мешает ему ­работать.

В 1901 году Вильгельм Рентген получил Нобелевскую премию по физике, став одним из первых ее ­лауреатов.

Специальные рентгеновские аппараты позволяют археологам обнаруживать и изучать предметы под толщей земли или грудой камней. Компьютерная программа создает трехмерное изображение находки, что существенно упрощает работу ­археологов.

Интерференция и дифракция рентгеновских лучей

Ввиду малости длины волны рентгеновских лучей явления интерференции и дифракции не могли быть получены обычными способами. Длина волны световых лучей в 104 раз больше длины рентгеновских лучей. Рентген предполагал, что открытые им лучи обладают волновой природой, и стремился доказать это способом, применяемым в отношении видимого света. Его усилия не привели к положительному результату. Хага и Винд пропускали рентгеновские лучи через очень узкую щель размером несколько тысячных долей миллиметра на широком конце V-образной щели.

На фотопластинке, помещенной сзади щели, наблюдали уширение пучка рентгеновских лучей, проходящих через узкие участки щели. В 1909 г. Вальтер и Поль выполнили такой же опыт, не получив определенного доказательства наличия дифракции. В 1912 г. Зоммерфельд пересчитал полученные результаты приведенных опытов. Он заключил, что жесткие рентгеновские лучи должны иметь длину волны 4x 10-9 см.

Об этом периоде Макс Лауз писал: «Эта дифракция была фотометрически исследована первым ассистентом Рентгена П. Кохом. Зоммерфельд с успехом применил относящуюся сюда теорию дифракции и смог получить среднее значение длины волны, правда, грубое, но до сих применяемое… Таким образом, я жил там в атмосфере, насыщенной вопросами о природе рентгеновских лучей». В феврале 1912 г. П. Эвальд обратился к Лауэ по вопросу о поведении световых воля в пространственной решетке из поляризующихся атомов. При обсуждении этого вопроса Лауэ пришла в голову мысль, что если атомы образуют пространственные решетки, то должны наблюдаться явления интерференции, подобные световой интерференции.

В феврале 1912 г. два ученика Рентгена, Фридрих и Книппинг, предприняли, по предложению Лауэ, опыты по дифракции рентгеновских лучей па кристаллической решетке. Опыт состоял в следующем. При помощи ряда свинцовых диафрагм выделяли узкий пучок рентгеновских лучей. Этот пучок падал на тонкий кристалл цинковой обманки (ZnS). Пройдя сквозь кристалл, рентгеновские лучи попадали на фотопластину. Пластинка была поставлена перпендикулярно начальному направлению лучей. На пластинке, после проявления, получалось интенсивное центральное пятно и ряд правильно расположенных пятнышек. Было наглядно доказано, что кристаллы являются подходящей дифракционной решеткой для рентгеновских лучей. Это открытие, с одной стороны, позволило исследовать структуру многих кристаллов, с другой — можно было исследовать с большей точностью спектры рентгеновских лучей.

От катодных трубок к томографам

Рентген-диагностика развивалась стремительно. Уже в 1919 году аргентинский врач Карлос Хьюсер впервые провел рентгенологическое исследование кровеносных сосудов. Для того чтобы увидеть сосуды, Хьюсер внутривенно ввел контрастное вещество — йодид ­калия.

В 1927 году португальский специалист Эгаз Мониз предложил методику исследования сосудов головного мозга с помощью рентгена. Исследования Мониза и Хьюсера положили начало рентгеновской ангиографии, которая широко используется и в настоящее ­время.

Одновременно с распространением диагностики развивалась и рентгенотерапия. В 50‑х годах XX века хирурги предложили проводить операции с использованием рентгеновского ­излучения.

Активно исследовались и методы защиты. Были определены допустимые дозы излучения и разработаны правила работы. Врачей и лаборантов, занимавшихся рентгенодиагностикой, обязали носить защитные свинцовые ­фартуки.

Новый этап в использовании излучения для диагностики наступил в 1972 году, когда американский физик Аллан Кормак и британский инженер Годфри Хаунсфилд предложили метод компьютерной томографии. Они смогли измерить степень ослабления рентгеновского излучения различными по плотности органами и тканями ­организма.

Томография стала возможной благодаря компьютерным технологиям, которые позволили анализировать большие объемы данных. Первые томографы использовались только для исследования головного мозга, но вскоре появились аппараты, «сканировавшие» весь организм. За открытие Хаунсфилд и Кормак получили в 1979 году Нобелевскую премию по физиологии и ­медицине.

Основные свойства рентгеновских лучей

  1. Проникающая способность. Все тела для рентгеновского луча прозрачны, и степень прозрачности зависит от толщины тела. Именно благодаря этому свойству луч стал применяться в медицине для выявления работы органов, наличия переломов и инородных тел в организме.
  2. Они способны вызывать свечение некоторых предметов. Например, если на картон нанести барий и платину, то, пройдя через сканирование лучами, он будет светиться зеленовато-желтым. Если поместить руку между трубкой рентгена и экраном, то свет проникнет больше в кость, чем в ткани, поэтому на экране высветится ярче всего костная ткань, а мышечная менее ярко.
  3. Действие на фотопленку. Х-лучи могут подобно свету делать пленку темной, это позволяет фотографировать ту теневую сторону, которая получается при исследовании рентгеновскими лучами тел.
  4. Рентгеновские лучи могут ионизировать газы. Это позволяет не только находить лучи, но и выявлять их интенсивность, измеряя ток ионизации в газе.
  5. Оказывают биохимическое воздействие на организм живых существ. Благодаря этому свойству рентгеновские лучи нашли свое широкое применение в медицине: они могут лечить как кожные заболевания, так и болезни внутренних органов. В этом случае выбирается нужная дозировка излучения и срок действия лучей. Длительное и чрезмерное применение такого лечения весьма вредно и губительно для организма.
Галилео. История изобретений. РентгенГалилео. История изобретений. Рентген

Следствием использования рентгеновских лучей стало спасение множества человеческих жизней. Рентген помогает не только своевременно диагностировать заболевание, методики лечения с применением лучевой терапии избавляют больных от различных патологий, начиная с гиперфункции щитовидной железы и заканчивая злокачественными опухолями костных тканей.

Развитие и боевые потери

Рентгеновское излучение как нельзя лучше пригодилось для диагностики, например, для выявления переломов, — врачи из Дортмунда (США) впервые диагностировали с помощью Х-лучей перелом руки в 1986 ­году.Но в то время свойства нового излучения были еще не до конца изучены, техника безопасности не соблюдалась, что приводило к появлению множества травм, главным образом лучевых, и даже гибели тех, кто подвергался действию ­облучения.

Итальянский исследователь Энрико Сальвиони стал одним из разработчиков первого флюороскопа — прибора для диагностики с использованием рентгеновского излучения. Структура прибора, предложенная Сальвиони, используется и в наши ­дни.Об открытии Рентгена стало известно за океаном. Знаменитый Томас Эдисон заменил платиносинеродистый барий на вольфрамат кальция, что позволило делать более четкие ­снимки.

Рентген подвергся критике со стороны другого немецкого исследователя, Филипа Ленарта, создателя одного из видов катодных трубок. Ленарту было досадно, что не он первым обнаружил Х-лучи, и теперь он пытался обесценить открытие коллеги. Даже после того, как всё мировое научное сообщество стало называть излучение рентгеновским, Ленарт упорно продолжал говорить об «излучении высокой ­частоты».

Тестирование и демонстрацию нового прибора мэтр поручил своему помощнику, Кларенсу Делли. Через несколько лет ассистенту пришлось ампутировать руку, которая серьезно пострадала из‑за лучевых ожогов, а вскоре Делли скончался от рака средостения. Все это привело к тому, что Эдисон прекратил исследования рентгеновских ­лучей.

Тем не менее, развитие рентгенодиагностики продолжалось. В 1904 году немецкий ученый Герман Ридер предложил новый стандарт для исследования желудка человека. С диагностикой желудка обнаружилась проблема — рентгеновские лучи проходили сквозь желудок, в итоге снимки получались неинформативными. Ридер предложил пациентам выпивать перед обследованием сернокислый барий. Бариевый раствор частично задерживал лучи, что позволило врачам увидеть на снимке долгожданные очертания ­желудка.

Таинственное свечение

Поздним вечером 8 ноября 1895 года немецкий исследователь Вильгельм Рентген неожиданно для себя самого совершил открытие, которому мог бы позавидовать любой ­ученый.

Рентген изучал электрические разряды в стеклянных вакуумных трубках. В тот день он, как обычно, задержался в лаборатории допоздна — время шло к полуночи. Наконец, ученый погасил свет и собирался уже отправиться домой, как вдруг заметил странное свечение на рабочем ­столе.

Оказалось, что светился экран, покрытый платиносинеродистым барием (BaPt (CN)4 • 4Н20).Слабое бледно-зеленое свечение экрана появлялось только тогда, когда катодная трубка работала. Ее выключение приводило к исчезновению таинственного света. Перемещая экран по лаборатории, физик понял, что удивительные лучи распространяются на несколько метров, легко преодолевая преграды из непрозрачных материалов — алюминиевые листы, толстые книги, колоду игральных карт, деревянный ящик лабораторного стола… А случайно подставив под чудо-излучение руку, ученый узрел на экране жутковатую картину — скелет собственной ­кисти!

Тут Рентген вспомнил, как пару дней назад он обнаружил, что лежащая на его рабочем столе фотопластина оказалась таинственным образом засвечена, хотя и была завернута в светонепроницаемую упаковку. Теперь он догадался, что причиной этого явления стали только что обнаруженные загадочные ­лучи.

Палеобиологи с помощью рентгена смогли обнаружить остатки пигмента в окаменевших останках, что позволило выяснить, как были окрашены динозавры. Оказалось, что окраска этих гигантов была довольно невзрачной — в основном преобладали черный и коричневый ­цвета.

Использование рентгеновских лучей на заре XX века

В начале XX века еще не было известно о последствиях бесконтрольного применения Х-лучей. Вдохновившись идеями Рентгена, другой известный физик Томас Эдисон пытается сконструировать флюороскоп – аппарат для рентгенографии внутренних органов человека. Однако эксперименты приводят к гибели ассистента физика: за четыре года он получает слишком большую дозу облучения, испытывая на себе действие рентгеновских трубок. У человека развилась злокачественная опухоль, и спасти его не удалось.

Происходят и курьезные случаи. Однажды Рентген получает письмо от матроса с просьбой прислать ему в конверте немного чудодейственных лучей. Участвуя в сражениях, он получил пулевое ранение в грудь, но врачи не могут извлечь пулю, не зная точное ее местонахождение.

А владельцы одного из магазинов модной обуви закупили флюороскоп, чтобы по рентгеновским снимкам ног клиенток было удобнее подбирать туфли. Использование лучей непрофессионалами приводит к тому, что покупатели получают огромную дозу облучения, поражения кожи.

В Англии выходит реклама одежды, якобы предохраняющего от рентгеновского облучения, а в США даже издают закон, воспрещающий использовать рентгеновские лучи в театральных биноклях.

История с изюминкой

Шел 1886 год. Граф Михаил Воронцов из ревности выстрелил в свою жену из дробовика. В тяжелом состоянии с гнойным воспалением женщина была доставлена в больницу Кронштадта. Несмотря на то что ее лечением занимались ведущие врачи, состояние больной только ухудшалось. Обнаружить все инородные тела, вызывавшие воспаление, специалистам не ­удавалось.

Раскаявшийся граф вспомнил, как в одном из периодических изданий он прочел статью об открытии немецкого ученого Рентгена. Там же было описание прибора для рентгенодиагностики. Сконструировать прибор предложили профессору Александру Попову (тому самому изобретателю радио). Аппарат был создан в кратчайшие сроки. С его помощью Попов получил снимок локализации дроби в теле пациентки. В отличие от современных приборов, позволяющих получать снимки за считанные минуты, экспозиция заняла не менее часа. Тем не менее инородные тела были благополучно извлечены, и графиня пошла на ­поправку.

Рентгеновские лучи быстро нашли широкое применение в самых разных областях. В одном из своих сообщений сам Рентген представил фотографию заряженного ружья. На снимке четко видны дефекты на внутренней поверхности двустволки. Лучи стали использовать в криминалистике, медицине и даже в ­искусствоведении.

Вскоре рентген-кабинеты появились и в других городах России. Их стали организовывать и на военных судах — диагностика позволяла быстро находить осколки в теле раненых моряков. Один из аппаратов был установлен на крейсере ­«Аврора».Уже в 1918 году в России появилась рентгенологическая клиника, а в 1921 году в Петербурге — первый стоматологический кабинет, в котором использовалась ­рентгенодиагностика.

Принципы получения изображения

Особенности этого излучения определены самой природой их появления. Излучение происходит за счет электромагнитной волны. К основным ее свойствам относятся:

  1. Отражение. Если волна попадет на поверхность перпендикулярно, то она не отразится. В некоторых ситуациях свойством отражения обладает алмаз.
  2. Способность проникать в ткани. Помимо этого, лучи могут проходить сквозь непрозрачные поверхности таких материалов, как дерево, бумага и т.п.
  3. Поглощаемость. Поглощаемость зависит от плотности материала: чем он плотнее, тем икс-лучи больше его поглощают.
  4. У некоторых веществ происходит флуоресценция, то есть свечение. Как только излучение прекращается, свечение тоже проходит. Если оно продолжается и после прекращения действия лучей, то этот эффект имеет название фосфоресценция.
  5. Рентгеновские лучи могут засветить фотопленку, так же как и видимый свет.
  6. Если луч прошел сквозь воздух, то происходит ионизация в атмосфере. Такое состояние называют электропроводным, и определяется оно с помощью дозиметра, которым устанавливается норма дозировки облучения.
Ссылка на основную публикацию
Похожие публикации